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Temperature profile for Poiseuille flow
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For planar Poiseuille flow of an atomic fluid in the weak-flow regime, we find that the classical Navier-
Stokes prediction of a quartic temperature profile is incorrect. Our results, which confirm a prediction made by
Baranyai, Evans, and DaiviBED) [Phys. Rev. A46, 7593(1992], indicate that near the center of the channel
the temperature profile is quadratic. When the temperature profile is fitted to the theoretical predictions of BED
we obtain estimates of the thermal conductivity that are in excellent agreement with accurate independent
estimates of this transport coefficient. If the presence of the quadratic component of the temperature profile is
ignored, the derived value of the thermal conductivity is in error by some $8%063-651X97)07903-4

PACS numbdss): 03.40.Gc, 02.50-r, 51.10:+y, 05.70.Ln

I. INTRODUCTION The price paid for this simplification was that a fictitious
(i.e., not occurring in natujehermostat had to be introduced
In a previous paper Baranyai, Evans, and DaiB&D) into the simulation to remove the viscous heat. This thermo-
[1] used molecular-dynamics computer simulation to showstat enabled the observation of heat flow in an inhomoge-
that in the presence of a spatially varying strain rate, heaneously shearing system where the temperature was constant
flow can occur even in thabsenceof a temperature gradient everywhere. One might argue that the “excess” heat ob-
VT. It was observed that such a heat fligs is proportional  served could have been induced by the thermostatting
to the gradient of the square of the strain ra(gecV)/z. This  mechanism itself and that for a natural system, where no
simple observation has profound consequences for our ursuch fictitious thermostats exist, the usual Fourier heat con-
derstanding of heat transport in systems subject to viscouduction law would remain valid.
heating. In the present paper we address this criticism by carrying
Consider heat transport in a system undergoing Poiseuilleut molecular-dynamics computer simulations of planar Poi-
flow between two parallel walls that are maintained at a comseuille flow between parallel isothermal atomic walls. The
mon fixed temperature. An external forEg (such as grav- equations of motion for the fluid atoms between the walls are
ity) drives the flow, which in turn generates viscous heatsimply Newton’'s equations for interacting particles subject
This viscous heat is proportional to the square of the locato an external gravity field that drives the flow. The system
strain ratey(y)? (y is the normal coordinajeand in turn  we study is an atomic fluid sandwiched between thermostat-
generates local variations in the temperature. Fourier’s lawed atomic walls. We have recently developed efficient exact
then predicts that these temperature inhomogeneities will inmethods for computing the local thermodynamic flux tensors
duce a local heat fludy=VT(y). However, BED predicted in such system$2-5]. We will show that the temperature
that even in the absence of local variations in the temperatungrofile for this system deviates significantly from that pre-
VT=0 spatial variations in the strain rate will also generate aicted by classical Navier-Stokes theory. We also show that
heat quxJroVyZ. In the weak flow limit(F,—0), these two an estimate of the thermal conductivity obtained from the
contributions to the heat flu§ourier's contribution and the quatrtic fit of the classical Navier-Stokes temperature profile
shear gradient contribution, respectivelglearly have the yields an erroneous value of the estimated thermal conduc-
same dependence on the applied field. Neither contributiotivity.
dominates the other in this limit. The comparisons that we make of the Navier-Stokes pre-
In Ref.[1] BED predicted that when both of these contri- dictions of the temperature profile in Poiseuille flow take due
butions are accounted for, the normal variation of the temaccount of the effects of the local variations in the transport
perature across a Poiseuille channel deviates from the wealoefficients that result from viscous heating. In the weak-
flow prediction of the classical Navier-Stokes momentumflow limit these variations can be ignored. Our simulations
and heat equations, namelj>~y*. Instead, when the shear are carried out close to the weak-field limit so that these
gradient contributions to the heat flux are included the temvariations can be treated as sm@al1%) perturbations to the
perature profile contains contributions that are quadratic iweak-flow Navier-Stokes solution. For the external fields
the normal coordinate. These quadratic contributions arstudied in our simulations the spatial variations in the viscos-
only observable over microscopic distances near the centélly (7) and thermal conductivity) cannot explain the tem-
of the channel. This is presumably why the effect has not, tgerature profile observed in our simulations. In particular,
our knowledge, been seen experimentally. In R&f.BED  allowance for spatial variations in the viscosity and thermal
did not simulate Poiseuille flow, but instead carried outconductivity cannot explain the quadratic variation of tem-
simulations of shear flow driven by a transverse externaperature that we observe. Finally, we discuss the implica-
field (a so-called sinusoidal transverse fieldhis technique tions of shear-induced heat flow within the context of a dif-
permits the simulation of inhomogeneous shear flow withouferent definition of a nonequilibrium thermodynamic
the added complications of modeling walls. temperature and find that the heat flux may be writ-
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ten in terms of the gradient of this nonequilibrium tempera-effects are unimportant and where continuum mechanics is

ture. expected to give an accurate description of the system.
The first corrections to the continuum weak-field solu-
Il. THEORY tions for Poiseuille flow might be expected to arise from the
variations induced in the transport coefficients by the tem-
A. Classical formulation perature and density variations that are brought on by vis-

Consider steady shear flow in thedirection with a ve- ~ cous heating in the flow itself. For our geometry, all thermo-
locity gradientdu,/dy=y in they direction. The hydrostatic dynamic quantities are functions pfalone. The pressure is
pressurep, which is a function of temperatufeand number @ function of bothp and T, but Eq.(1) implies
density,n, must satisfy the equation

dp dp dp+<9p dT_o ®
d —_— = — 53— VU.
gy PY=0. ® dv dpdy aTdy
Sincedpl/dp and dp/JT are constant coefficients, the varia-
In writing this equation we assume that we are sufficientlytions in density and temperature are proportiakakAT. In
close to equilibrium for local thermodynamic equilibrium to the linear regime the leading order variation in the tempera-
hold. If the flow is driven by an external forde, (such as ture is quartic, so the density variations must also be quartic,
gravity) that acts on individual atoms in the fluid, the steady-Ap*ATexy*. Knowing the functional variation of density
state momentum conservation equation impli2ls and temperature allows us to determine the form of the varia-
tion of 7(y) andA(y) in an analogous manner. Thus we can

du,(y) write, to a first approximation,

dy

7(y) =n(y)Fe, 2

v Po="1;
dy * d
Y Y n(y)=no+nsy*,
whereP,, is thexy element of the pressure tensarjs the _ 4
shear viscosity, and is the number density. The steady-state 7(y) =10+ 74y, @)
Navier-Stokes energy equation is 4
A(Y)=NotAay",
av TPy YY) == g5 [AY) 5|~ 7 () whereng,ny,79,74,M0.A4 @re constants. _
y y y If we substitute these spatially varying transport coeffi-
=0, (3) cients into Eqs(2) and(3) and solve foru,(y),T(y) we will
arrive at a temperature profile that now takes into account the
whereT is the temperaturely, is they component of the variations in space ofy and\. Ideally we should iterate this
heat flux vector, and is the thermal conductivity. process until convergence; however, we shall see later that
In the weak-flow limit, the local variation of thermody- for the flow rates studied in this work we can stop the pro-
namic properties and transport coefficieftaused by vis- cess after the first iteration. Solving E@®) with the values
cous heating may be ignored and Eq(3) reduces to Of 7(y) and\(y) in Eq. (7) gives us
Nd2T(y)/dy?+ 5y(y)?=0. In the case of planar Poiseuille

dT(y)

flow where the fluid flows in thex direction between two T(y)=To+Tay"+Tey®+0(y"), ®
stationary parallel plates separated in thalirection by a 5 )
distancel, , we can solve Eqg2) and(3) in the weak-flow — uz7o S U3(3Ng74— 7\ 4m0) ©
limit, giving a velocity profile M ) VL ANG '
Fe 12 where agairl is the midchannel temperatu¢at y=0).
Ux(y)=— 27 (yz_ Zy) =Uo+Uzy® (4) Equation 0(8) currenty has five  unknowns
(70:m4,Mg,Na,T), but this can be reduced to three by noting
and a temperature profile that the viscosityz(y) can be calculated explicitly. In Ref.
[2] we showed that for planar Poiseuille flow the shear stress
T(y)=To+Tay%, (5) Py could be calculated in a molecular-dynamics simulation
directly by integrating Eq(2),
whereT,=—(nF)%/12\ » and T, is the temperature at the
channel midplang =0. _ Y
In writing this equation we assume that the transport co- Pay(y)= Fefo dy'n(y"), (10

efficients are constant over the channel width and that the

heat flux is linearly proportional to the temperature gradientwheren(y) is the spatially dependent number density. Using
(i.e., Fourier's lawJ,=—AVT). Clearly, the first of these Eq.(7) we can writeP,, as

assumptions will break down in very narrow channels where

the effects of molecular packing manifest themselves in an ny(y)=Fe(n0y+%n4y5), (11
oscillatory variation of almost all properties, including the

number density2-5]. In the present work we are interested where the constant of integration is z€i2]. In the local

in only relatively wide channels where molecular packingequilibrium regime we find
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1 Equation(15) is a fourth-order differential equation that re-

Not+ 5 n4y4) . (12 quires four independent boundary conditions for its solution.
This is an example of a notorious problem in hydrodynamics

In deriving Eq.(12) we are assuming that the length scalebeyond the Navier-Stokes order. We avoid this difficulty by
characteristic of variations in the strain rate is much greate@pplying a perturbation expansion. The fourth order terms in
than the range of the intermolecular potential. This assumpEd- (15) act on only lower-order solutions that are known
tion justifies the use of a local constitutive relation for thealready. At each order, the equation for the unknown func-
shear viscosity 7(y). Thus 7,=—Fgn,/2u, and 7=  tion remains of second order.
—FoNn,/10u,. The coefficientsn, and n, can be obtained In the weak-flow limit where the spatial variation of the
directly from computer simulation, as can the temperaturdransport coefficients may be ignored we have instead of Eq.
coefficients, and so Ed8) has only three unknowns. Thus (5)
we can fit Eq.(8) to the temperature profile to determine the
best estimates ofy, A4, andT,. T(y)=To+ Toy2+Tuy*, (16)

F

=__°

B. Strain rate coupling where the coefficients are given @is= — (nF.)2&/\ * and

The heat flux constitutive relation postulated by BED) ~ T4= —(nF¢)?/12\ 77 [4]. As was pointed out by BED, the
was quadratic term dominates over the quartic term whengver
</12¢/ 7. Both terms in Eq(16) have the same functional
Jo= —AVT—£V[Vu(Vu)'], 13 dependence on the external field, thus even in the zero-field
limit, nonclassical behavior resulting from the effects of
strain rate coupling will be observed. In this limit the char-
acteristic length that controls the crossover from classical to

st_reaming velocity of the fluid. It is pos_sible that oth_er termsnonclassical behavior is independent of the magnitude of the
with the same symmetry as our strain rate coupling tem%xternal field driving the flow

could also make contributions to the heat flux, prvever, Following similar arguments to those given in Sec. Il A
from 'the work Of. BED[l].We know that. the_se additional above, to a first approximation the number density varies as
couplings do not involve higher-order derivatives of the tem- (y)=No+noy?+n,y*. Hence the spatial variation of the
perature field. This is because BED demonstrated the eXiSFFanspoPt cozefficier?ts 'may be represented as

ence of a heat flux in the absenceanfy temperature varia-
tions. Also one may consider couplings to the stress tensor

where ¢ is a phenomenological strain rate coupling coeffi-
cient, \ is the thermal conductivity coefficient, andis the

rather than to the strain rate tensor as in @¢@). However, 7(Y)= 10+ m2y*+ nay*,
writing Eq. (13) in terms of stress couplings simply amounts
to a redefinition of¢ since in the weak-field limit, stress is M(Y) =N+ Nay2+ N ,y%, (17)

simply proportional to strain rate. The couplings cannot in-

volve couplings to the hydrostatic pressure since in the ) 4
weak-field limit mechanical stability demands that the hydro- E(y)=&ot &y tEay”.
static pressure must be constant.

In the case of planar shear flow of a simple fluid, BB  Allowing a quadratic variation in the streaming velocity
can be written as

Joy(¥)= =AYV, T(Y) —EYV,yy(y)2 (14 Ue(Y)=Uo + Uzy*+O(y") (18)

For our Poiseuille flow geometry we hay#,4] instead of  and substituting Eq¢17) into (15) gives
Eq. ()

d dT(y)] d dy(y)?
d‘y[“y) dy }*aﬂ ) ~dy

T(y)=To+ Tay?+Tay*+Tey®+O(y®), (19

+7(y) y(y)*=0.
(15 where the coefficients are given as

2
uz€o
To=—4—")
_ U5(No70+ 6Xoé2— 6N 20)
4 3)\(2) ’

(20

2U§(30)\g§4+ 3)\%7]2+ 30)\%&0_ 30)\0)\450_ 5)\2)\0 No— 30}\2)\062)
6 45\3
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function [6] ¢(r)=4(r ?—r %) +1 for r<2"® and

O O O &(r) =0 for r >2%6 (we have defined the WCA potential con-
Ot stantso and ¢ to be unity for simplicity; we also define the
- i o™ fluid and wall particle masses to be unity
l O I The system was surrounded by periodic images of itself in

- e - each of the three Cartesian dimensions. We note here that the
’ simulation geometry is such that the external field is inxhe
direction and heat will flow in they direction only. Our

wall atoms

|
v PATTTTTTTTT § system consisted of 1278 fluid atoms bounded by 54 wall
| ) .
I O plane of closest approach atoms that were three atomic layers thi(k8 atoms per
v . O layen. The walls were separated in the direction by a
e O |- y=0plane lengthl,=69 and were fixed in a fcc lattice structure by a
x ! - combination of restoring forces and a constraint mechanism
: O O O that fixed the center of mass of each layer of wall particles
Oﬂuid atoms . while allowing individual wall atoms the freedom to vibrate
| iFe . . .
| O _ - about their lattice site2,7]. There was only one three-atom-
O thick wall per simulation cell. The second wall was simply
*_ _ the periodic image of the first. This periodicity also ensured
EXE ) periodic image of wall that the total density of the system remained constant. For
CEEES details of the governing equations of motion and the integrat-
ing scheme used to solve them, the reader is referred to Refs.
O [2, 3] o
O O The average number density of the system na®.839.
O The unit cell dimensiond,, L,, andL,, were 4.6840,

71.9444, and 4.6840 respectively. It is important to note that
L, includes the fluid and wall particlesee Fig. 1

The walls were kept at a constant temperature of 0.722
and density of 0.8442. The wall temperature was held con-
Stant by application of a Gaussian thermostat, which ensured
éhat the average temperature of all the wall atoms was con-
stant. We stress again that even though a thermostat is ap-
plied to the wall atoms enabling the removal of viscous heat
e{lrom the system, the fluid atoms themselves rmoesubject
to any thermostat. Their equations of motion are simply

ponents arise from cross coupling of the heat flux with theewton's equations for a group of ilnteracting pa.rticles Sub-
ect to an external “gravitational” field=, that drives the

strain rate gradient and which components arise from th ;
d b ow between the plates. The external field was weak

spatial variations induced by viscous heatingzn,£. We o . .
see that the quadratic term derives solely from the strain ratge~0-005, ensuring that the system remained close to the

coupling. The quartic term contains the classical weak-field"{ealé'ﬂmt”tI”E't'f The Sy St?”:. wasf first 7611!0wedt to Ztttam
Navier-Stokes contribution, but also contains contributionss_gaog state be qreda S|trrt1u ation o | t d tlme steps(

from the second-order variation gfwith distance as wellas - ) was carried out to accumu ate data. .

a component from zeroth-order strain rate coupling and Both the temperature and velocity profiles of the fluid

second-order variations of the thermal conductivity with dis-Vere calculated in  bins  of finite VOIumeVbi“
tance(\,). Similarly, the sixth-order term contains contribu- =L,A,L,=6.1432, wherely=0.28,and at planes with sepa-

tions from 7, \, and &. For notational convenience we will ration Ay ['.5]' In what follows we .ShOW o_nIy the_rgsults
calculated in bins because of their superior statistics, but

refer to the classical weak-field Navier-Stokes solution ; . s -
given in Egs.(4) and (5) as NS, to the stronger-field solu- %hoth methods produced identical results within statistical er-

tions where the spatial variation of transport coefficients isrorf' Refs [2. 3 it h that d-ord ¢
allowed for Egs(8) and(9) as YNS, to the weak-field solu- . ' ~€ S'[. 31 was shown that a second-order symmet-
tion including strain rate couplinglé) as XNS, and to the ric polynomial provided a good representation of the stream-

t _field strain rat i ioh 2 ing velopity of_thg flujd in the zero-flqw-rqte limit and we
2Sro>?3§rsle d strain rate coupling expressi¢h9) and (20) show this profile in Fig. 2. However, in this work we con-

sider not only this case, but also higher-order symmetric
terms up toO(y®).
lll. SIMULATION DETAILS The temperature in each bin was calculated as

FIG. 1. Simulation geometry for planar Poiseuille flow. The
axis is normal to the page.

In the above derivation we have allowed for only a quadrati
variation in the velocity because it is easy to show that th
ratio u,/u, is proportional toF 2. For the field strength used
in this work this ratio is only 2.510°. This means that the
higher-order terms are negligible compared to the statistic
noise. From Eqs(19) and(20) we can identify which com-

We have previously described in detail the NEMD tech- Npin
niques used to simulate planar Poiseuille fi@&g] and here > mifvi—u(y,H][vi—u(y,b)]
we only briefly outline the way in which the simulations i ebin
were carried out. The geometry of the system is shown in (T(Yoin)) = (3Npin— d(Npin/N)) '
Fig. 1. Both the fluid and wall particles interact via the
Weeks-Chandler-AndersefWCA) interatomic potential wherev; is the laboratory velocity of particle u(y,t) is the

(21)
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ux(y) = uO + u2y2 - -NS; n’ 7\’
——XNS; n, A & (@)
120 [rrrrTT T T T T T T T T T T T T T T T T T T T T T
[ 1.00 FALAANLELLELE A B B BLALRLALN BURMLELE BLALLEL B
100 F .
[ 095 7
0.80 [ § r
o) [ ] 090 | .
0.60 - ] T(y)
0.40 [ . 085 T ]
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y
FIG. 2. Streaming velocity profile, showing &(y?) symmet-
ric polynomial fit. — & -NSin, A
——XNS;n, A & (b)
instantaneous streaming velocityyatNy,;, is the number of 0.96 D
particles in any particular bir\ is the total number of fluid :
particles,d is the number of degrees of freedom lost to the 095 |
system by fitting the streaming velocity profile, and Boltz- .
mann’s constant is equal to 1. The streaming velocity is cal- 0.94 |
culated at each time step by a least-squares fit to the instan-T(y) _
taneous velocity profild2]. Since d=k/2+1 degrees of 093 ¢
freedom are lost in fitting the coefficients of the streaming :
velocity to a symmetric polynomial of ordds, a factor of 092 1
dN;/N degrees of freedom are lost in each bin. This number
is very small in comparison toN8,;, and could even be ig- 091
nored for a simulation of this size. We note here that the 0o
.90

angular brackets denote time averages.

As mentioned above, the temperature profile was calcu-
lated assuming streaming velocity profiles that wéxg?),
O(y*), andO(y®). However, the three corresponding tem- . . .
perature profiles were found to agree within statistical uncer- F!CG- 3. (@) Temperature data across the entire channel, including
tainties, confirming that any deviations to the classically exne Navier-Stokes(NS) and strain rate coupled Navier-Stokes

pected temperature profile arot a result of inaccurate (XNS) fits to the data. No allowance is made for the effects of
fitting of the streaming velocity data viscous heating on the transport coefficierity. Temperature data

for the region—25<y=<25, including the NS and XNS fits to the

data.
IV. RESULTS AND DISCUSSION

(5) and (16) to find values of\y and &. Also shown is the
value of the residuaR for both temperature fits, which

In Fig. 3@ we show the temperature profile across theclearly shows that the inclusion of strain rate coupling gives
entire channel. The data have been symmetrized and much better fit to the data.
smoothed over four bin§.e., a width of 1.12 Also shown The value ofA computed from Egs(5) and (16) can be
are the fits to this data given by NS and XNS, i.e., assumingompared to the known value af calculated by the Evans
constant values ofy, \, and possibl\¢. In Fig. 3b) we show  NEMD thermal conductivity algorithnj8] for a fluid at a
only the central region of the channel betweeB5<y<25.  state point equal to the temperature and density of the middle
On this scale it is easy to see that the classical Navier-Stokesf the channel. The state point used was thug{=(0.836,
solution of a quartic temperature profile does not fit the dat®.955 and the simulations were performed for a system of
well. Including the strain rate coupling term into the tem-500 WCA fluid atoms. The thermal conductivikygyp Was
perature equation, as in El6), generates an additional determined by running a series of simulations at various field
quadratic term, which fits the data well in the central regionstrengths and then extrapolating the valuexgfyp to the

In Table | we show the values of the coefficients for bothzero-field limit. This gave us a value afgyp=6.89+0.05.
the velocity and temperature profiles, as well as the values dfrom Table | we see that the weak-flow Navier-Stokes esti-
the calculated transport coefficients. The viscosjfywas mate is\ys=5.07, whereas the strain rate coupling Navier-
calculated directly from the coefficient of the velocity pro- Stokes estimaté.e., including the strain rate coupling term
file, i.e., ;y=—nFJ/2u,, and this value is then used in Egs. gives Ay ys=7.90. The former underestimates the true ther-

A. Temperature and thermal conductivity
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TABLE |. Properties of interest for the case of constant transport coefficigr@sNS and XNS systems

System n U2 TZ T4 o }\0 60 TO R
NS 0.839 —9.26x10°4 —1.2803<10°7 2.26 5.07 0.947 0.995 93
XNS 0.839 —9.26x10°% —5.5185<107° —8.2155¢10 8 2.26 7.90 126 0.957 0.999 92

mal conductivity by 26.4%, whereas the latter overestimateand is adequately truncated at sixth order. We also point out
it by 14.6%. Also we note that the NS solution underesti-that the sixth-order term must be included in the expansion
matesT, by about 1%, a value outside the range of the errotto enable a complete determination of all the transport coef-
bars of the data, whereas the XNS solution predigtsvith  ficients.
very good accuracy.

We now consider the case where the transport coefficients B. Heat flux and nonequilibrium temperature
are allowed to vary with positiofii.e., y). This gives two
data sets: first YNS, which usgsdependent transport coef-
ficients in the Navier-Stokes equations, and second XYN
which employs strain rate coupling of the heat flux an
y-dependent transport coefficients. The various transport ¢

efficients are given in Table II, along withy and R, while | for fluid q . | A For simplicit
the corresponding fits to the temperature data are plotted general for fluids undergoing pianar tlow. For simplicity we
assume that) and\ are constant.

Figs. 4a) and 4b). Once again we see from the shape of the Consid bit K | rai ‘ il

profiles that the XYNS fit gives a better fit to the data than Orés' eran t?]r |ﬂrary wea kOW planar strain rtz?]e pfrfo Ite

the YNS fit. The transport coefficient we are most concerne y)- pecause he flow Is weak we may ignore the efiects
hat viscous heating has on the transport coefficients. From

with is Ay, which we find to be \yyns=3.89 and . .
Aoxyns=6.93. Thus we see that including the spatial varia-tsrt]gazr;e;tggteequat'oms) for such a flow we see that in the

tion of the transport coefficients improves the fit of the tem-

In a previous papel4] we demonstrated that for a fluid
Sundergoing planar Poiseuille flow, the heat flux remains un-
d(Ehanged from its classical cubic profile by the inclusion of
&he cross coupling term in the linear constitutive equation for
the heat flux. We will now show that this result is in fact

perature profile, but does this at the expense of a significantly dT(y) n (v ¢ dy?
poorer estimate of the thermal conductivity. The YNS esti- v X J’ YA(y')dy' — NV (22
mated thermal conductivity is only 56% of the known value. y 0 y

This erroris much greater than the est_lmated staﬂ_stlcal UNyhere we have used the symmetry about the center of the
certainties in the data. However, including the spatial varia;

tions and strain rate coupling in the heat equafiom, Eqs f!ow (y=0) tq eliminate the integrgtion COf_‘Sta”t- This equa-
(19) and (20)] gives us a value that is within 1%; of the tion may be mte_grated_one_more time to give the temperature
known thermal conductivity profile T(y). This profile will clearly be dependent on the

The correct thermal conductivity,, as the correct shape value of the strain rate coupling coefficieqitWe can also

of the temperature profile, and the correct value of the mid_c:alculate the heat flux vector assuming the generalized con-

channel temperaturé, are predicted using the full XYNS stitutive relation(13) and (14). This gives,

solution. Merely accounting for the spatial variationjrand y

\ alone isnot sufficient to explain the shape of the tempera- Joly)=— ﬂf YAy )dy'. (23)
ture profile or the discrepancies in the values\gbor T,. 0

In Sec. Il it was noted that the process of determining therg g clearly the same expression we would have derived

functional form of7(y), My), and(y) should be iterative. 54 e not known about the phenomenon of strain rate cou-
Further iterations are unnecessary given the statistical unce ling. Thus we see that strain rate coupling affects the tem-
tainties in the base data. In Table Il we show entries des'gf)erature profile, but not the heat flux vector.

nated as u4xXYNS, which were obtained using a second it- zg tar a5 measurable thermodynamic quantities are con-

Terned, we could have derived exactly the same temperature

; . "€&nd heat flux profiles by defining a new nonequilibrium tem-
complex. The second iteration allows a fourth-order varia-

(18)—(20) as the expressions for the coefficients are quit

S X . . . eratureT

tion in the streaming velocity, the coefficients for which arep ne

given in Table IIl. From that table we can see that the good- £

ness of fit to the velocity profile does improve somewhat. The=Teqt ¥ ¥ (24)

However, the goodness of fit to the temperature profile does

not improve at all. The differences between fgevalues for  andnot invoking a generalized constitutive relation for heat
XYNS and u4XYNS gives an estimate for the statistical un-flow. Indeed, this has recenﬂy been noticed by Casas-

certainties iné,. We therefore estimatg, as 8G+20. Vasquez and Jo{i9] and Bidar, Casas-Vasquez, and Jou
We also note here that the truncation of the series exparf1q].

sion in Egs.(19) and (20) was tested by considering the

residuals of the fit to the temperature data. The eighth-order V. CONCLUSION

term in Eq.(19) was explicitly evaluated and the residual for

the temperature fit determined. It was found that this residual We have provided convincing humerical evidence that the

decreased slightly, suggesting the series converges rapidtyassical fourth-order temperature profile generated by vis-
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TABLE II. Properties of interest for the case of spatially variant transport coefficigmsYNS and XYNS systems
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FIG. 4. (a) Temperature data across the entire channel, allowing
for y-dependent transport coefficienf¢§NS) and strain rate cou-
pling (XYNS) fits to the datay-dependent transport coefficients
result from the effects at finite flow rates of viscous heatifiy.
Temperature data for the region25<y=<25, including the YNS
and XYNS fits to the data.

cous heating within Poiseuille flow is incorrect. We have
confirmed the prediction of Baranyai, Evans, and Dajiis
that in the weak-flow regime there is a quadratic as well as a
quartic component to the temperature profile. One explana-
tion for this is that for weak flows there is a contribution to
the heat flux that is proportional to the gradient of the square
of the strain rate. Certainly such an effect was seen in com-
puter simulations of sinusoidal shear flow by BED and
also in recent more accurate studies by Todd, Evans, and
Daivis [11]. An alternative, but equivalent, explanation of
the origin of the quadratic component to the temperature
profile is that the nonequilibrium temperature of a system
contains a contribution that is quadratic in the local value of
the shear rat€24).

In a previous papef4] we showed that for planar Poi-
seuille flow, an analysis of the heat flux vector alone cannot
confirm the existence of this strain rate coupling effect. We
have now extended this proof to the case of any simple fluid
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undergoingany planar flow (where the streaming velocity, understanding of this coefficient and also its possible rela-
and hence strain rate, may be expressed as a function of otienship to generalized irreversible thermodynamics.
Cartesian coordinate
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